
sit-methods
Facundo Muñoz

11 April, 2024

Contents

1 Introduction 1

2 Simulation of SIT MRR trials 2

3 Design principles 3

4 Likelihood of a finitely-observed dispersal model 4
4.1 Dispersal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Survival model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Probability of capture . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 TODO 10

6 Conclusions 11

References 11

1 Introduction

First thing I want to do, is to have a simulator of releases of sterile mosquitoes and
their interaction with wild individuals.

Doing a literature review about simulation of mosquito dynamics.



2 Simulation of SIT MRR trials

The R-package nosoi (Lequime et al. (2020)) might be of help. Although is designed
for assessing epidemiological networks of contacts, and phylogenies, perhaps it could
be adapted to our use case, where the transmissible pathogen is the sterility. However,
I’m not sure whether we can easily represent concepts such as sterile or wild males,
wild females, eggs and so on. In any event, the package itself can serve as an example
of how to build and design an agent-based modelling framework in R.

Ocelet (Degenne et al. (2009)) can potentially be a suitable simulation platform
for this use case, thanks to its agent-based spatially explicit approach. Still, it can
be an overkill for a pilot study, since the learning curve is steep. It might be more
convenient to start with a simple simulation approach in R and eventually evolve to
something more powerful.

NetLogo (Wilensky (1999)) is another general purpose agent-based modelling plat-
form. Looks powerful and stable, with many examples to take inspiration from.

Olivier Gimenez kindly shared1 some code for simulation of Spatial Capture-
Recapture (SCR) models. Based on Royle et al. (2014). The downside of this is
that it does not take into account the dispersal dynamics.

Dufourd and Dumont (2012) propose a full simulator of dispersal dynamics of Aedes
albopictus mosquitoes. But it contains many compartments for specific stages that
I don’t really need and that complicates the model greatly. Besides, the article is
relatively old and I don’t find the code available. Yet, it can also serve as inspira-
tion.

Possibly the wisest solution is to develop our own simulator, tailored to our present
needs for SIT studies. Stochastic diffusion processes can be simulated in R with
the package Sim.DiffProc (Guidoum and Boukhetala (2020)). But for the simplest
examples, I don’t really need stochasticity.

Package simecol (http://simecol.r-forge.r-project.org/) (Petzoldt and Rinke (2007))
may possibly help. It provides a simulation framework for ecological models, and
implements particle diffusion models.

Pilot functionality has worked successfully. See file test_diffusion.R. I need to
integrate that into sit and make it generally available.

1https://oliviergimenez.github.io/basics_spatial_capturerecapture/

http://simecol.r-forge.r-project.org/
https://oliviergimenez.github.io/basics_spatial_capturerecapture/


3 Design principles

• Integrated into sit in order to leverage classes and methods there.

• Simple models for dispersion, survival and trapping.

• Can be either individual-based or based on PDEs for modelling population
behaviour, and coupled with some sampling variation based on probabilistic
models (e.g. of death, capture, mating, etc.). The latter approach neglects
variation in dispersion, which is more important for small-sized releases and
populations. On the other hand, individual-based simulation is computation-
ally intensive.



4 Likelihood of a finitely-observed dispersal model

Here we combine ideas from dispersal and time-to-event processes to derive a prob-
abilistic model for the observations.

We know the number of individuals initially released, the release time, which can be
set at 𝑡 = 0 without loss of generality, and the location of the release-point, which
can also be considered at x = (0, 0).
Individuals disperse and either die naturally in the wild or get captured in one of
the 𝐼 traps at known locations. These are 1 + 𝐼 competing events in the sense that
they are mutually exclusive. Moreover, we only observe a limited period of time in
which the traps are active, leading to censoring. Thus, the process can be framed
as a time-to-event data under competing risks.

However, in contrast to standard survival models, we don’t follow each individual
separately. Instead, we only observe aggregated counts of individuals which got
captured at the end of each observation period. Furthermore, we don’t even observe
the natural death process directly since we don’t know at each time how many
individuals remain alive. We only know that is an additional risk at play.

4.1 Dispersal model

We assume that in the absence of stimuli, mosquitoes disperse following a Brownian
motion (Dumont et al. 2011), which means that they fly around randomly, inde-
pendently from each other, changing directions continuously, with no preferential
direction of flow. This is the classical model for the dynamics of gas molecules where
changes in directions are due to random collisions between molecules.

The density 𝜌 of Brownian particles at point x ∈ ℝ2 and at time 𝑡 ∈ ℝ satisfies the
diffusion equation

𝜕𝜌
𝜕𝑡 = 𝐷∇2𝜌, (1)

where 𝐷 is the diffusivity constant and represents the rate at which particles spread
and ∇2 = ∇ ⋅ ∇ is the Laplace operator2 (i.e., the divergence of the gradient of a
scalar function).

Assuming that individuals are released from the origin of spatial coordinates at the
initial time 𝑡 = 0, the diffusion equation has the solution

𝜌(x, 𝑡) = 1√
2𝜋𝜎2 exp { − 1

2
‖x‖2

𝜎2 } = 1√
8𝜋𝐷𝑡 exp { − ‖x‖2

8𝐷𝑡 } (2)

2https://en.wikipedia.org/wiki/Laplace_operator

https://en.wikipedia.org/wiki/Laplace_operator


with 𝜎2 = 2𝑛𝐷𝑡, and 𝑛 is the dimension of the space. This is a Gaussian density
function centred at the release point and with a variance equal to 4𝐷𝑡 in ℝ2.
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Figure 1: Evolution of the probability density over time at 4 different distances from
the release point.

Working the Brownian motion with discrete time and space leads to a Random
Walk, in which the walker’s position after a large number of independent steps is
distributed according to a Normal distribution of total variance 𝜎2 = 𝜀2 𝑡/𝛿𝑡, where
𝜀 is the step size in space, 𝑡 is the total time elapsed and 𝛿𝑡 is the time step.

Thus, the diffusivity of the process in ℝ2 is given by

𝐷 = 𝜀2

4𝛿𝑡
. (3)

4.2 Survival model

We assume that the probability that an individual survives any given day is a con-
stant that we call Probability of Daily Survival (PDS) 𝜋𝑠. As such, the proba-
bility of surviving up to day 𝑡 after release is

𝜋𝑡
𝑠 = exp{𝑡 log 𝜋𝑠} = exp{−𝛽𝑡}, (4)



with 𝛽 = − log 𝜋𝑠 > 0 and 𝑡 > 0.

This formulation allows to work in continuous time, not only in discrete days.

From a survival perspective, let 𝑇0 the time-to-natural-death in the absence of traps.
Equation (4) gives the survival function 𝑆(𝑡) = 𝑃(𝑇0 > 𝑡) which decreases expo-
nentially at an unknown constant rate. This corresponds to a constant hazard rate
equal to:

ℎ0(𝑡) = −𝑆′(𝑡)/𝑆(𝑡) = 𝛽.

Thus, while we don’t observe any deaths directly, we observe captures in traps, which
work as censoring for this time-to-event process. Indeed, if individuals were captured
at some point, they must have been alive at that point.

However, we don’t observe all individuals alive at some point (only the captured
fraction). Meaning that we can’t analyse this survival process independently from
the capture process. The standard approach was to consider the fraction of captured
individuals as a constant proportion of the total. But it is unclear whether this is a
sensible or valid hypothesis.

4.3 Probability of capture

The dispersal process is only partially observed through the capture of a fraction of
the individuals in a set of traps located at fixed positions in the area.

We assume that, in the absence of prior death or capture in the same or other traps,
the probability of capture of a released individual is proportional to the density 𝜌
at the location 𝑥𝑖 of the trap 𝑖 at day 𝑡 and the survival probability.

Why did I state the proportionality to the survival probability? Fur-
thermore, shouldn’t we take into account a range of influence of the trap,
rather than only the density at the specific point? Or is this a acceptable
approximation?

Let 𝑇 ∈ {0, 1, … , 𝐼} a categorical variable describing the fate of an individual, which
can be either 𝑇 = 0 if the individual is not captured during the experiment or 𝑇 = 𝑖
if the individual is captured in trap 𝑖.
Let 𝑋𝑖 > 0 | 𝑇 = 𝑖 be the capture time of an individual, conditional to capture
on trap 𝑖

̃𝜋𝑖(𝑡) = 𝑃(𝑋𝑖 = 𝑡 | 𝑋𝑖 ≥ 𝑡, 𝑇 = 𝑖) ∝ 𝜋𝑡
𝑠 𝜌(𝑥𝑖, 𝑡) (5)

= 𝛼𝑖𝑡−1/2 exp { − 𝛽𝑡 − 𝛾𝑖/𝑡}, 𝑡 > 0 (6)

with 𝛼𝑖 = 𝑘𝑖/
√

𝜋8𝐷 > 0, 𝛽 = − log 𝜋𝑠 > 0 and 𝛾𝑖 = ‖x‖2/8𝐷 > 0.



The normalising constant 𝑘𝑖 ensures that the unconditional distribution sums to
1.

Here I was thinking in terms of daily probabilities in order to avoid
integrating continous times. But it may be better to think in terms of
hazards.

Again, this is conditionally to the absence of prior capture in the same or other
traps. The quantity and location of other traps, as well as the time elapsed, would
necessarily influence this conditional capture probability.

The unconditional probability is then

𝜋𝑖(𝑡) = 𝑃(𝑋𝑖 = 𝑡) = 𝑃(𝑋𝑖 = 𝑡 | 𝑋𝑖 ≥ 𝑡, 𝑇 = 𝑖)(1 − 𝑃(prior capture)) (7)
= ̃𝜋𝑖(𝑡)(1 − 𝑃(prior capture)) (8)
= (9)

Essentially, I think that this problem can be formulated in terms of a
survival analysis with competing risks.

Since the capture of an individual on different days are mutually exclusive events,
the cumulative probability of capture 𝜋𝑐

𝑖 (𝑡) = ∑𝑇
𝑡=0 𝜋𝑖(𝑡) is the probability of capture

at any time since release and up to time 𝑡.

𝜋𝑐
𝑖 (𝑡) = 𝛼𝑖

𝑡
∑
𝑥=0

𝑥−1/2 exp { − 𝛽𝑥 − 𝛾𝑖/𝑥}, (10)

with 𝛼𝑖 = 𝑘𝑖/
√

𝜋8𝐷 > 0 and 𝛾𝑖 = ‖x‖2/8𝐷 > 0.

Note that in continuous time we would get an integral, which has a analytical indef-
inite result as:

∫ 𝑥−1/2 exp(−𝑏𝑥 − 𝑐/𝑥) d𝑥 =
√𝜋𝑒−2

√
𝑏√𝑐( − erf(

√𝑐−
√

𝑏𝑥√𝑥 ) + 𝑒4
√

𝑏√𝑐(erf(
√

𝑏𝑥+√𝑐√𝑥 ) − 1) + 1)
2
√

𝑏
+ constant, (11)

with 𝑏 > 0, 𝑐 > 0, where erf(𝑥) = 2√𝜋 ∫𝑥
0 𝑒−𝑥2 d𝑥, 𝑥 > 0 is the error function3.

3https://en.wikipedia.org/wiki/Error_function

https://en.wikipedia.org/wiki/Error_function


This yields the following analytical formula for the cumulative capture rate for a
trap 𝑖 in the absence of other captures:

𝜋𝑐
𝑖 (𝑡) = 𝛼𝑖

2 √𝜋
𝛽 𝑒−2√𝛽𝛾𝑖[ − erf(

√𝛾𝑖 − √𝛽𝑡√
𝑡 ) + 𝑒4√𝛽𝛾𝑖(erf(

√𝛾𝑖 + √𝛽𝑡√
𝑡 ) − 1) + 1],

(12)

25 m

50 m

100 m

200 m
400 m0.000

0.025

0.050

0.075

0.100

0 5 10 15 20
Time (days)

Da
ily

 c
ap

tu
re

 p
ro

ba
bi

lit
y

Figure 2: Daily probability of capture for each trap using the simulated parameters
and uniform trap attractiveness. The scale parameter 𝑘 is arbitrary.

Figure 2 shows that each trap has a different capture rate with a maximum at a
different moment in time, depending on the distance from the release point. The
number, location and dates of captures will hopefully be informative enough to
identify the diffusivity, survival and attractiveness parameters.

4.4 Observation model

We observe the numbers 𝑌 of captured individuals in traps 𝑖 = 1, … , 𝐼 installed at
survey days 𝑗 = 1, … , 𝐽𝑖. The survey periods for trap 𝑖 span from day 𝑡0

𝑖𝑗 to 𝑡1
𝑖𝑗.

Assuming that 𝑁 individuals were released at day 𝑡 = 0, and that each of them has
a cumulative capture probability on trap 𝑖 at survey 𝑗 conditional to the absence



of other captures described by (12), the number of captures 𝑌𝑖𝑗 follows a Binomial
distribution with parameters 𝑁 and ̃𝑝𝑖𝑗 = 𝜋𝑐

𝑖 (𝑡1
𝑖𝑗) − 𝜋𝑐

𝑖 (𝑡0
𝑖𝑗).

However, each of the 𝑁 individuals can either end up in only one of the surveys
𝑖, 𝑗 or not being captured in the course of its life with probability 𝑝0. Thus, the
outcome vector (𝑁 − ∑ 𝑌𝑖𝑗, 𝑌𝑖𝑗) follows a Multinomial distribution with 𝑁 trials,
𝐾 = 1 + ∑𝐼

𝑖=1 𝐽𝑖 mutually exclusive events and probabilities 𝑝𝑘 where,

𝑝0 +
𝐼

∑
𝑖=1

𝐽𝑖

∑
𝑗=1

𝑝𝑖𝑗 = 1

This allows normalising the conditional probabilities ̃𝑝. I can do this across traps,
but not over time, because time is not exchangeable.



5 TODO

• Integrate simulation functionality into sit.

• Use the simulator to check the assumption of capturing a constant fraction of
the active individuals in a set of traps, in order to estimate survival.

• The realised density of the individuals at a given time progressively deviates
from the expected Gaussian density, due to the capture process.

Empirical Theoretical

diffusion_only
general_scenario

Figure 3: Density of individuals at day 10

To be more precise, we should the capture of individuals affects the diffusion
process (the death process as well, but it is independent from the location and



time). Therefore, it needs to be accounted for in the diffusion equation, and
the density of individuals derived as the solution to such modified equation.

The diffusion equation actually follows from the continuity equation4, thus
assuming no sources or sinks. However, traps act as skinks of individuals.

The continuity equation can be generalised to account for sinks5. And the
corresponding diffusion equation should be solved to find the solution. Perhaps
numerically.

6 Conclusions

• …
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