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1 Introduction and notation

1.1 Termination time 𝑇

Let the random variable 𝑇 > 0 represent the termination time at which an individual
ceases its activity. Either by death or by capture in a trap.

We can describe the distribution of 𝑇 using its:

• Probability Density Function (PDF): 𝑓(𝑡) = limd𝑡→0
ℙ(𝑡<𝑇 ≤𝑡+d𝑡)

d𝑡 = 𝐹 ′(𝑡)

• Cumulative Distribution Function (CDF): 𝐹(𝑡) = ℙ(𝑇 ≤ 𝑡) = ∫𝑡
0 𝑓(𝑢) d𝑢,

• Survival function: 𝑆(𝑡) = ℙ(𝑇 > 𝑡) = 1 − 𝐹(𝑡)
• Hazard Rate function: ℎ(𝑡) = limd𝑡→0

ℙ(𝑡<𝑇 ≤𝑡+d𝑡∣𝑇 >𝑡)
d𝑡

The hazard function can be interpreted as the instantaneous rate of events (i.e. the
expected number of terminations per unit of time). It is often more convenient
to express hypotheses in terms of the hazard function and then derive the other
expressions from it. The following relationships can be useful.

Since ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡) = ℙ(𝑡<𝑇 ≤𝑡+d𝑡,𝑇 >𝑡)
ℙ(𝑇 >𝑡) = ℙ(𝑡<𝑇 ≤𝑡+d𝑡)

𝑆(𝑡) , it follows from the
definition that,

ℎ(𝑡) = 𝑓(𝑡)
𝑆(𝑡) = −𝑆′(𝑡)

𝑆(𝑡) = − d
d𝑡 log 𝑆(𝑡) (1)

Reciprocally, given a hazard function, survival can be obtained using

𝑆(𝑡) = exp ( − ∫
𝑡

0
ℎ(𝑢) d𝑢), (2)

assuming that 𝑆(0) = 1.

1.2 Termination cause 𝐶

Let the categorical random variable 𝐶 ∈ {0, 1, … , 𝐼} be an indicator of the termina-
tion cause. Either death (𝐶 = 0) or capture in trap 𝑖 (𝐶 = 𝑖).
Its Probability Mass Function is:

ℙ(𝐶 = 𝑖) = 𝜔𝑖, (3)

with 0 ≤ 𝜔𝑖 ≤ 1 and ∑ 𝜔𝑖 = 1.



Due to the dispersal process, the relative risks of being caught in either trap will
shift over time. Thus, it will be easier to specify these risks conditional on time and
then average over the PDF of T:

𝜔𝑖 = ∫
∞

0
ℙ(𝐶 = 𝑖 ∣ 𝑇 = 𝑡)𝑓(𝑡) d𝑡. (4)

1.3 Specific termination times 𝑇𝑖

Let 𝑇𝑖 be the termination time in a scenario where the only possible termination
cause is 𝑖.
𝑇 and 𝑇𝑖 are different random variables, with different PDFs, CDFs, survivals and
hazard rates, for all of which we define the corresponding specific versions 𝑓𝑖, 𝐹𝑖,
𝑆𝑖 and ℎ𝑖.

The relationship between these variables is that

𝑇 = min{𝑇𝑖 ∶ 𝑖 = 0, … , 𝐼} (5)

We can think of it as if at every instant, all specific termination causes were tested
independently. The first that occurs determines both the termination time 𝑇 and
cause 𝐶.

1.4 Position 𝑋

Finally, let 𝑋(𝑡) ∈ ℝ2 be the random location of an individual at a given time
0 ≤ 𝑡 ≤ 𝑇 . Without loss of generality, we assume that 𝑋(0) = (0, 0).

2 Preliminary results

2.1 Fixed and known position

2.2 Different constant conditional hazard rates imply non-constant
overall hazard rate

Assume a fixed position (𝑥0) of an individual, and no mortality.

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡) = ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡)
ℙ(𝑇 > 𝑡)

= ∑ ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝐶 = 𝑖)ℙ(𝐶 = 𝑖)
ℙ(𝑇 > 𝑡 ∣ 𝐶 = 𝑖)ℙ(𝐶 = 𝑖)

(6)



Letting 𝜔𝑖 = ℙ(𝐶 = 𝑖), assuming constant conditional hazard rates 𝜆𝑖 implies 𝑓𝑖(𝑡 ∣
𝐶 = 𝑖) = 𝜆𝑖𝑒−𝜆𝑖𝑡, thus:

ℎ(𝑡) = lim
d𝑡→0

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡)
d𝑡 = lim

d𝑡→0
ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡)

𝑆(𝑡) d𝑡

= ∑ 𝑓𝑖(𝑡 ∣ 𝐶 = 𝑖)𝜔𝑖
∑ 𝑆(𝑡 ∣ 𝐶 = 𝑖)𝜔𝑖

= ∑ 𝜔𝑖𝜆𝑖𝑒−𝜆𝑖𝑡

∑ 𝜔𝑖𝑒−𝜆𝑖𝑡

= ∑ 𝜆𝑖𝜃𝑖(𝑡),

(7)

with 𝜃𝑖(𝑡) = 𝜔𝑖𝑒−𝜆𝑖𝑡

∑ 𝜔𝑗𝑒−𝜆𝑗𝑡 .

The overall hazard rate is thus a weighted average of conditional hazard rates, with
coefficients that evolve in time.

The coefficients 𝜃𝑖(𝑡) are a weighted version of the softmax1 transformation of {𝜆𝑖}
with temprature 𝑡. They verify ∑ 𝜃𝑖(𝑡) = 1, ∀𝑡 > 0, 𝜃𝑖(0) = 𝜔𝑖/ ∑ 𝑤𝑗 and
limd𝑡→∞ 𝜃𝑖(𝑡) = 0 except for 𝑖 such that 𝜆𝑖 is smallest.

Thus, the coefficients start by reproducing the distribution of the termination causes
𝜔𝑖 and progressively concentrate on the trap with lower hazard rate.

2.3 The conditional hazard rates must be all equal to the overall hazard
rate

The conditional hazard rates are the hazard rates of capture events in a specific trap,
conditional to capture in that trap.

ℎ(𝑡 ∣ 𝐶 = 𝑖) = lim
d𝑡→0

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝐶 = 𝑖, 𝑇 > 𝑡)
d𝑡

= lim
d𝑡→0

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡, 𝐶 = 𝑖 ∣ 𝑇 > 𝑡)
𝑃 (𝐶 = 𝑖 ∣ 𝑇 > 𝑡) d𝑡

The key observation is that since the position of the individual is fixed, the scenario
is constantly the same and thus 𝑃(𝐶 = 𝑖 ∣ 𝑇 > 𝑡) = 𝑃(𝐶 = 𝑖), ∀𝑡. So, the
termination cause 𝐶 is independent from the termination time 𝑇 , and we have,

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡, 𝐶 = 𝑖 ∣ 𝑇 > 𝑡) = ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡)ℙ(𝐶 = 𝑖 ∣ 𝑇 > 𝑡)
= ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡)ℙ(𝐶 = 𝑖)
= 𝜔𝑖 ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡)

1https://en.wikipedia.org/wiki/Softmax_function

https://en.wikipedia.org/wiki/Softmax_function


Thus,
ℎ(𝑡 ∣ 𝐶 = 𝑖) = lim

d𝑡→0
𝜔𝑖ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡)

𝜔𝑖 d𝑡

= lim
d𝑡→0

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡)
d𝑡

= ℎ(𝑡), ∀𝑖

(8)

Alternatively, one could also argue that the overall hazard rate should be constant
since the situation with fixed position remains unchanged.

Let ℎ(𝑡) = 𝜆0. From (7), we have

∑ 𝜆𝑖𝜃𝑖(𝑡) = 𝜆0. (9)

Which is only possible if 𝜆𝑖 = 𝜆0, ∀𝑖.
This is confirmed with an empirical simulation with 2 traps and fixed positions as
displayed in figure 1).
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Figure 1: Conditional and overall empirical hazard rates for a scenario with fixed
position of individuals and 2 traps at different distances.



2.4 The overall hazard rate is the sum of specific hazard rates

Let 𝜆𝑖 = ℎ𝑖(𝑡), 𝑖 = 0, … , 𝐼 the specific hazard rates associated to death (𝑖 = 0)
and capture in trap 𝑖. This is, the (constant) hazard functions of the corresponding
events if the specific cause was the only one at play. In other words, if the individual
was active in its fixed position until it was eventually terminated by 𝑖.
Since 𝑇 = min{𝑇𝑖 ∶ 𝑖 = 0, … , 𝐼}, in an instant d𝑡,

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡) = 1 −
𝐼

∏
𝑖=0

(1 − ℙ(𝑡 < 𝑇𝑖 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡))

= 1 −
𝐼

∏
𝑖=0

(1 − 𝜆𝑖 d𝑡)

= 1 − [1 − 𝜆0 d𝑡 − ⋯ − 𝜆𝐼 d𝑡 + 𝑂(d𝑡𝑘)], 𝑘 ≥ 2

= d𝑡
𝐼

∑
𝑖=0

𝜆𝑖 + 𝑂(d𝑡𝑘)

(10)

Thus, the overall hazard rate is:

ℎ(𝑡) = lim
d𝑡→0

ℙ(𝑡 < 𝑇 ≤ 𝑡 + d𝑡 ∣ 𝑇 > 𝑡)
d𝑡

= lim
d𝑡→0

𝐼
∑
𝑖=0

𝜆𝑖 + 𝑂(d𝑡𝑘−1), 𝑘 ≥ 2

=
𝐼

∑
𝑖=0

𝜆𝑖

(11)

3 Probability of capture with fixed location of the individual

Let’s first assume that 𝑋(𝑡) = 𝑥0, 0 ≤ 𝑡 ≤ 𝑇 .

3.1 With only one trap

Only one trap means that 𝐼 = 1 and 𝐶 can only take the value 0 in case of death
prior to capture, or the value 1 in the converse.

We assume that, if an individual stays at the same location, the hazard function of
the capture time 𝑇 ∣ 𝐶 = 1, 𝑋(𝑡) = 𝑥0 is constant in time, and decreases exponen-
tially with the distance 𝑟 = ‖𝑥0‖ > 0 from the trap:

ℎ1𝑟(𝑡) = ℎ(𝑡 ∣ 𝐶 = 1, 𝑋 = 𝑥0) = 𝜆𝑟 = 𝛼𝑒−𝛽𝑟, 𝛼, 𝛽 > 0.



From equation (2), it follows that:

𝑆(𝑡 ∣ 𝐶 = 1, 𝑋 = 𝑥0) = 𝑒−𝜆𝑟𝑡

Hence, 𝑓(𝑡 ∣ 𝐶 = 1, 𝑋 = 𝑥0) = −𝑆′(𝑡 ∣ 𝐶 = 1, 𝑋 = 𝑥0) = 𝜆𝑟𝑒−𝜆𝑟𝑡, which is the PDF
of the exponential distribution of rate 𝜆𝑟.

𝑇 ∣ 𝐶 = 1, ‖𝑋‖ = 𝑟 ∼ Ex(𝛼𝑒−𝛽𝑟) (12)

We can also compute the daily capture probability:

ℙ(0 ≤ 𝑇 ≤ 1 ∣ 𝐶 = 1, 𝑋 = 𝑥0) = ∫
1

0
𝜆𝑟𝑒−𝜆𝑟𝑡 d𝑡 = 1 − 𝑒−𝜆𝑟

3.2 With several traps

Consider now the case where we have 𝐼 > 1 traps in different locations. The aim is
to compute the probability of capture where these traps are active together and to
model the capture time of each trap.

Here, the difficulty comes from the dependence between these variables because if
an individual is trapped by the trap 𝑖, then the capture time of the other ones will
be equal to infinity.

This is why we consider the global termination time 𝑇 jointly with the termination
cause 𝐶 described initially.

3.2.1 Multinomial capture probability

First, let 𝐾 a categorical variable which takes the value 0 if the individual is not
trapped before the next day and 𝑖 if it is trapped by the trap 𝑖.
This is: 𝐾 = 0 if 𝑇 > 1 and 𝐾 = 𝑖 if 𝑇 ≤ 1, 𝐶 = 𝑖 > 0.

We can easily compute the probability of non-capture which means that individually,
the traps didn’t work, i.e. :

ℙ(𝐾 = 0) = ℙ(𝐾 ≠ 1, … , 𝐾 ≠ 𝐼) =
𝐼

∏
𝑖=1

ℙ(𝐾 ≠ 𝑖) =
𝐼

∏
𝑖=1

(1 − 𝜔𝑖) = 𝜔0

where 𝜔𝑖 = 1 − 𝑒−𝜆𝑘 .



Now, we would like to build a distribution conditionally to the event 𝐾 ≠ 0 using
the weights 𝜔𝑘. One way to do this, is to assume that the distribution is :

ℙ(𝐾 = 𝑘|𝐾 ≠ 0) = 𝜔𝑘
∑𝐼

𝑖=1 𝜔𝑖

which is of course a probability distribution. Thus, we can calculate the value for
the global distribution which is :

ℙ(𝐾 = 𝑘) = ℙ(𝐾 = 𝑘, 𝐾 ≠ 0)
= ℙ(𝐾 = 𝑘|𝐾 ≠ 0)ℙ(𝐾 ≠ 0)
= (1 − 𝜔0) 𝜔𝑘

∑𝐼
𝑗=1 𝜔𝑖

3.2.2 Capture time

Let 𝑇1, … , 𝑇𝐼 the capture time for each trap. We are going to build a discrete process
helping us to compute the survival function of each time.

Daily capture process

Let (𝐾𝑚)𝑚∈ℕ a categorical process describing the state of the individual at the day
𝑚. We can see this as a markov chain with the transition matrix :

ℙ(𝐾𝑚+1 = 𝑗|𝐾𝑚 = 𝑖) =

⎧{{{
⎨{{{⎩

0 si 𝑖 ≠ 0 et 𝑗 ≠ 𝑖
1 si 𝑖 ≠ 0 et 𝑗 = 𝑖
𝜔0 si 𝑖 = 𝑗 = 0
(1 − 𝜔0) 𝜔𝑘

∑𝐼
𝑗=1 𝜔𝑖

si 𝑖 = 0 et 𝑗 ≠ 0

Hence, this process can take only two values along time : 0 at the beginning and
another one after a certain amount of time. Indeed, if the individual is trapped by
one trap, it can not escape from it.

Then, let’s define the variable 𝑀𝑘 = inf{𝑚 ∈ ℕ, 𝐾𝑚 = 𝑘} for 𝑘 ≠ 0.

For now, we can just say that :

(𝑇𝑘 < ∞) ⇔ (𝑀𝑘 < ∞)

To compute this probability, we will calculate the mass function of the variable 𝑀𝑘.
In order to do that, we can express the event 𝑀𝑘 = 𝑚 using the process 𝐾𝑚 and
also its markov property. Therefore, we have :



ℙ(𝑀𝑘 = 𝑚) = ℙ(𝐾1 = 0, … , 𝐾𝑚 = 𝑘)
= ℙ(𝐾𝑚 = 𝑘|𝐾𝑚−1 = 0)ℙ(𝐾1 = 0, … , 𝐾𝑚−1 = 0)
= 𝜔𝑚−1

0 (1 − 𝜔0)𝜔𝑘
𝑊

Thus, the probability is :

ℙ(𝑀𝑘 < ∞) =
∞

∑
𝑚=1

ℙ(𝑀𝑘 = 𝑚) = 𝜔𝑘
𝑊

We can also deduce that ℙ(𝑀𝑘 = ∞) = 1 − 𝜔𝑘
𝑊 .

Survival function and density

Using the previous results, we are able to compute the survival function for each
capture time. Indeed, we have :

ℙ(𝑇𝑘 > 𝑡) = ℙ(𝑇𝑘 > 𝑡|𝑀𝑘 < ∞)ℙ(𝑀𝑘 < ∞) + ℙ(𝑇𝑘 > 𝑡|𝑀𝑘 = ∞)ℙ(𝑀𝑘 = ∞)
= ℙ(𝑇𝑘 > 𝑡|𝑀𝑘 < ∞)𝜔𝑘

𝑊 + 1 − 𝜔𝑘
𝑊

= 1 − 𝜔𝑘
𝑊 (1 − ℙ(𝑇𝑘 > 𝑡|𝑀𝑘 < ∞))

However, we can consider that knowing (𝑀𝑘 < ∞), the probability that 𝑇𝑘 > 𝑡 is
the same as when there is only the trap 𝑘 which is active. Then, we have ℙ(𝑇𝑘 >
𝑡|𝑀𝑘 < ∞) = 𝑒−𝜆𝑘𝑡 and :

𝑆𝑘(𝑡) = 1 − 𝜔𝑘
𝑊 (1 − 𝑒−𝜆𝑘𝑡)

It is possible to compute the density function :

𝑓𝑘(𝑡) = −𝑆′
𝑘(𝑡) = 𝜆𝑘

𝜔𝑘
𝑊 𝑒−𝜆𝑘𝑡

We observe that the integral of this function is not equal to 1, but 𝜔𝑘
𝑊 . It is actually

due to the fact that the variable 𝑇𝑘 can take the value ∞ with probality 1 − 𝜔𝑘
𝑊 .



4 Probability of capture with unknown location

We assume that the individual is no longer immobile and that its position along time
can be modeled as a Brownian motion (interpretation ?) that means the density 𝑔
satisfies the diffusion equation :

𝜕𝑔
𝜕𝑡 = 𝐷∇2𝑔

where 𝐷 is a diffuse constant which represents the rate of spread of the individuals
and ∇2 is the divergence of the gradient.

Hence, we can express the density 𝑔 as follow :

𝑓(𝑥|𝑎, 𝐷) = 𝒩(𝑥|𝑎, (4𝐷𝑡)𝐼2)

Let’s note 𝑋𝑡 the Brownian motion at time 𝑡 and 𝑓𝑋𝑡
its density.

4.1 With only one trap

All the previous section was about the computation of the probability of capture
for a constant location. Here, we would like to extend the expression assuming the
location is random.

Consider the hazard function, we have, by the definition that :

ℎ(𝑡) = lim
d𝑡→0

ℙ(𝑡 ≤ 𝑇 ≤ d𝑡|𝑇 ≥ 𝑡)
d𝑡 = lim

d𝑡→0
∫

ℝ2

ℙ(𝑡 ≤ 𝑇 ≤ d𝑡|𝑇 ≥ 𝑡, 𝑋𝑡 = 𝑥)
d𝑡 𝑓𝑋𝑡

(𝑥) d𝑥

As everything is positive, we can switch between limit and integral :

ℎ(𝑡) = ∫
ℝ2

lim
d𝑡→0

ℙ(𝑡 ≤ 𝑇 ≤ 𝑡 + d𝑡|𝑇 ≥ 𝑡, 𝑋𝑡 = 𝑥)
d𝑡 𝑓𝑋𝑡

(𝑥) d𝑥

More, the limit allows us to consider this quantity as the hazard function of the
capture time with a constant location. So we can write this :

ℎ(𝑡) = ∫
ℝ2

𝜆(𝑥)𝑓𝑋𝑡
(𝑥) d𝑥

where 𝜆(𝑥) = 𝛼𝑒−𝛽||𝑥−𝑥0||2 where 𝑥0 is the location of the trap.



Computation of the integral

We would like to calculate :

∫
ℝ2

𝛼𝑒−𝛽||𝑥−𝑥0||2𝑓𝑋𝑡
(𝑥) d𝑥 = 𝛼𝔼[𝑒−𝛽||𝑋𝑡−𝑥0||2 ]

We have :

𝔼[𝑒−𝛽||𝑋𝑡−𝑥0||2 ] = ∫
ℝ2

𝑒−𝛽||𝑥−𝑥0||2 1
8𝜋𝐷𝑡𝑒− ||𝑥||2

8𝐷𝑡 d𝑥

= 1
8𝜋𝐷𝑡 ∫

ℝ2
𝑒−( ||𝑥||2

8𝐷𝑡 +𝛽||𝑥−𝑥0||2) d𝑥

But the term in the exponential can be written as :

||𝑥||2
8𝐷𝑡 + 𝛽||𝑥 − 𝑥0||2 = ||𝑥||2

8𝐷𝑡 + 𝛽(||𝑥||2 − 2 < 𝑥|𝑥0 > +||𝑥0||2)

= 𝛾𝑡(||𝑥||2 − 2 < 𝑥| 𝛽
𝛾𝑡

𝑥0 >) + 𝛽||𝑥0||2

= 𝛾𝑡(||𝑥 − 𝛽
𝛾𝑡

𝑥0||2 − || 𝛽
𝛾𝑡

𝑥0||2) + 𝛽||𝑥0||2

= 𝛾𝑡||𝑥 − 𝛽
𝛾𝑡

𝑥0||2 + 𝛽(1 − 𝛽
𝛾𝑡

)||𝑥0||2

where 𝛾𝑡 = 8𝐷𝛽𝑡+1
8𝐷𝑡 .

We can use this equality to have :

𝔼[𝑒−𝛽||𝑋𝑡−𝑥0||2 ] = 𝑒−𝛽(1− 𝛽
𝛾𝑡 )||𝑥0||2

8𝜋𝐷𝑡 ∫
ℝ2

𝑒−𝛾𝑡||𝑥− 𝛽
𝛾𝑡 𝑥0||2 d𝑥

But, it is well known that :

∫
ℝ2

𝑒−𝛾𝑡||𝑥− 𝛽
𝛾𝑡 𝑥0||2 d𝑥 = 𝜋

𝛾𝑡

Thus we finally have:

ℎ(𝑡) = 𝔼[𝛼𝑒−𝛽||𝑋𝑡−𝑥0||2 ] = 𝛼
1 + 8𝐷𝛽𝑡𝑒− 𝛽||𝑥0||2

1+8𝐷𝛽𝑡
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Figure 2: Hazard function of the capture time for different location of the trap.



These are the corresponding curve for different location of the trap :

Integral modification for survival function approximation

We know that :

𝑆(𝑡) = exp(− ∫
𝑡

0
ℎ(𝑠)𝑑𝑠)

but this integral is not calculable for our hazard function.

Thus, we have to approximate this value. However, the fact that the bound of the
interval goes to infinity makes the computation really difficult. But, we can rewrite
the integral (by using the transformation 𝑢 = 1

1+8𝛽𝐷𝑠) :

∫
𝑡

0
ℎ(𝑠)𝑑𝑠 = ∫

𝑡

0

𝛼
1 + 8𝐷𝛽𝑠𝑒− 𝛽||𝑥0||2

1+8𝐷𝛽𝑠 𝑑𝑠

= ∫
1

1+8𝐷𝛽𝑡

1
𝛼𝑢𝑒−𝛽||𝑥0||2𝑢(− 1

8𝐷𝛽𝑢2 )𝑑𝑢

= 𝛼
8𝐷𝛽 ∫

1

1
1+8𝐷𝛽𝑡

1
𝑢𝑒−𝛽||𝑥0||2𝑢𝑑𝑢

(13)

which will easier to compute for each terms (see function cumhazard_one in the file
functions.R.

4.2 With several traps

Now, we want to compute this in the case that there are 𝐼 trap located at position
𝑥𝑘 during the experiment.

FM: What is “this”? where does this come from?

ℎ𝑘(𝑡|𝑥) = 𝜔𝑘(𝑥)
𝑊(𝑥)𝜆𝑘(𝑥)

Thus, the previous reasoning from the one trap case gives :

ℎ𝑘(𝑡) = ∫
ℝ2

𝜔𝑘(𝑥)
𝑊(𝑥)𝜆𝑘(𝑥)𝑓𝑋𝑡

(𝑥) d𝑥

We can rewrite this formula :



ℎ𝑘(𝑡) = ∫
ℝ2

𝜔𝑘(𝑥)
𝑊(𝑥)𝜆𝑘(𝑥)𝑓𝑋𝑡

(𝑥) d𝑥

= 𝛼 ∫
ℝ2

𝜔𝑘(𝑥)
𝑊(𝑥)𝑒−𝛽||𝑥−𝑥𝑘||2𝑓𝑋𝑡

(𝑥) d𝑥

= 𝛼
8𝜋𝐷𝑡 ∫

ℝ2

𝜔𝑘(𝑥)
𝑊(𝑥)𝑒−( ||𝑥||2

8𝐷𝑡 +𝛽||𝑥−𝑥𝑘||2) d𝑥

Using what we have done in the previous section, we can deduce that :

ℎ𝑘(𝑡) = 𝛼𝑒− 𝛽||𝑥𝑘||2
1+8𝐷𝛽𝑡

8𝜋𝐷𝑡 ∫
ℝ2

𝜔𝑘(𝑥)
𝑊(𝑥)𝑒−𝛾𝑡||𝑥− 𝛽

𝛾𝑡 𝑥𝑘||2 d𝑥 = 𝛼𝑒− 𝛽||𝑥𝑘||2
1+8𝐷𝛽𝑡

1 + 8𝐷𝛽𝑡 ∫
ℝ2

𝜔𝑘(𝑦)
𝑊(𝑦)𝑓𝑌𝑡

(𝑦)𝑑𝑦

where 𝑌𝑡 ∼ 𝒩( 𝛽
𝛾𝑡

𝑥𝑘, 𝛾𝑡
2 𝐼2). Thus we can compute the hazard function seeing that

:

ℎ𝑘(𝑡) = 𝛼𝑒− 𝛽||𝑥𝑘||2
1+8𝐷𝛽𝑡

1 + 8𝐷𝛽𝑡 𝔼[𝜔𝑘(𝑌𝑡)
𝑊(𝑌𝑡)

]

It’s funny because we can see 𝑌𝑡 as a path to the trap 𝑘.

5 General model including survival of the individual

To end the calculation, we would like to add the death risk of each individual.

Lets consider the model as right censored data that is to say as 𝑇 = min(𝑋, 𝐶)
where 𝑋 is the capture time of a trap, and 𝐶 the censure time which can be seen as
the death time of the individual.

The censure time 𝐶 is a random variable following an exponential distribution and
conditionally to the capture at the trap 𝑘, 𝑋 has the hazard function as written as
upper.

Thus, the density of the couple can be expressed as :

𝑓(𝑋,𝐶)(𝑥, 𝑐) = 𝑓𝑋(𝑥)𝑓𝐶(𝑐)

But the collected data will be only from those such that 𝑋 < 𝐶. We can try to
compute the corresponding survival function :



ℙ(𝑇 > 𝑡, 𝑋 ≤ 𝐶) = ℙ(𝑋 > 𝑡, 𝑋 ≤ 𝐶) = ∫
ℝ+

∫
ℝ+

1𝑥<𝑐1𝑡<𝑥𝑓𝑋(𝑥)𝑓𝐶(𝑐) d𝑥𝑑𝑐 = ∫
∞

𝑡
( ∫

∞

𝑥
𝑓𝐶(𝑐)𝑑𝑐)𝑓𝑋(𝑥) d𝑥 = ∫

∞

𝑡
𝑓𝑋(𝑥)𝑆𝐶(𝑥) d𝑥

If we look at the time conditionally at the event 𝑋 ≤ 𝐶, we get a new density which
is proportional to 𝑓𝑋(𝑥)𝑆𝐶(𝑥).

6 Simulation verification

Now we would like to see if our calculation are available. Thus, we simulate data
with mortal individuals. We chose :

• a dispersion parameters 𝐷 = 150.

• a probability of capture for an individual located at the trap of 0.8
• a probability of capture for an individual located at 5 meters from the trap of

0.1 (useful to get 𝛽 parameters).

• a probability of dailey survival of 0.8

We get this with only one trap :

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

and we get this for a trap with others :

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

The curves fit well with the histograms. So, we can continue our study.

7 Cumulative likelihood with censored data

Now, we would like to use the data to estimate the unknown parameters of the
model, but there is a problem arising from the type of data we have.

During the experiment, we do not see exactly the capture time of an individual.
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Figure 3: Histogram of the simulation with the pdf of the capture time at a one trap
setting
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Figure 4: Histogram of the simulation with the pdf of the capture time at the trap
4 in a several traps setting



7.1 Type of censor

There is a lot of different type of censor. In our context, the capture times are
censored randomly and at the end, we will get an interval-censored data.

Formally, the model of this type of data is defined as a triplet of random variable
(𝐿, 𝑇 , 𝑅) where 𝑅 is the value of the right censored bound, 𝐿 is the left censored
bound and 𝑇 the real capture time.

We also get another random variable, that we call 𝛿 which can take three values :

• 𝛿 = 1 if we know the true value of 𝑇
• 𝛿 = 2 if 𝑅 = ∞
• 𝛿 = 3 else

The last case is the casual interval-censored case.

We can compute an estimator of the survival function with this type of data using
the Turnbull’s estimator.

7.2 A different likelihood

With these paradigm, we have to change the structure of the likelihood and take
in consideration this variation of the data. Consider a sample of censored data
(𝑡𝑖, [𝑙𝑖, 𝑟𝑖], 𝛿𝑖)𝑖=1,...,𝑛, we write :

ℒ = ∏
𝑖∶𝛿𝑖=1

𝑓(𝑡𝑖) ∏
𝑖∶𝛿𝑖=2

𝑆(𝑙𝑖) ∏
𝑖∶𝛿𝑖=3

(𝑆(𝑙𝑖) − 𝑆(𝑟𝑖))

But, in our context, we will have 𝛿𝑖 = 3, ∀𝑖, so the likelihood can be written as :

ℒ =
𝑛

∏
𝑖=1

(𝑆(𝑙𝑖) − 𝑆(𝑟𝑖))

Now, we suppose that we have a sequence of time (𝑡0 = 0, 𝑡1, … , 𝑡𝑛) which correspond
at the time when the trap are checked. For every check at 𝑡𝑗, we get a list of numbers
(𝑛1𝑗, … , 𝑛𝐾𝑗) which are the number of capture between 𝑡𝑗1

and 𝑡𝑗 for every trap.

With this setting, we can write our likelihood as :

ℒ =
𝑛

∏
𝑗=1

𝐾
∏
𝑘=1

(𝑆𝑘(𝑡𝑗) − 𝑆𝑘(𝑡𝑗−1))𝑛𝑗𝑘



So we get the following log-likelihood :

𝑙(𝑁; 𝐷, 𝛽, 𝛼, 𝜆) =
𝑛

∑
𝑗=1

𝐾
∑
𝑘=1

𝑛𝑗𝑘 log (𝑆𝑘(𝑡𝑗; 𝐷, 𝛽, 𝛼, 𝜆) − 𝑆𝑘(𝑡𝑗−1; 𝐷, 𝛽, 𝛼, 𝜆))

where 𝑁 = (𝑛𝑗𝑘) is the matrix of capture count.

8 Estimation of the parameters

8.1 Maximum likelihood estimator

8.2 Bayesian estimator by MCMC

TODO : - end this section with survival times of the individuals - plot the histogram
with the corresponding pdf (for one and several traps cases) - write the cumulative
likelihood with specific data - introduce two methods : likelihood maximization, and
Bayesian inference with priors defined by 𝛼 ∼ ℬ𝑒𝑡𝑎(𝑎, 1) 𝛽 ∼ ℬ𝑒𝑡𝑎(1, 𝑏) + research
a good candidate for D’s prior and (𝑎, 𝑏) parameters. - estimation of the parameters
with these two methods and see results with non parametric estimator of the survival
function. - application with real data.
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